U.G. 4th Semester Examination - 2022

MATHEMATICS [HONOURS]

Course Code: BMTMCCHT403

Course Title: Real Analysis-III

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Notations and Symbols have their usual meanings.

- 1. Answer any **ten** questions:
 - a) Show that $f(x) = \begin{cases} x, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$

is Riemann integrable on [0, 1].

b) If $f(x) = \begin{cases} n; & \text{for } x = \frac{1}{n}, \ n \in \mathbb{N}, \\ 0; & \text{otherwise} \end{cases}$

examine whether f is Riemann integrable or not on [0, 1].

c) Give examples of two non-Riemann integrable functions $f, g:[a, b] \to \mathbb{R}$ such that $fg \in \mathbb{R}[a, b]$.

- d) Write down the Bessel's inequality with Fourier co-efficients a_n and b_n .
- e) Consider the partition $P = \left(0, \frac{1}{2}, 1\right)$ of [0, 1]. Compute L(f, p) for $f(x) = -x^2$, $\forall x \in [0, 1]$.
- f) Give an example of a sequence of real valued continuous functions whose pointwise limit function is not continuous on a subset D of R.
- If R_1 and R_2 be the radii of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ respectively, then what will be the radius of convergence of the power series $\sum_{n=0}^{\infty} (a_n + b_n) x^n$?
- h) Show that, $\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{3}{2}\right) = \frac{\pi}{2}$.
- i) Does the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ converge uniformly for all real x?
- j) Find the value of $B\begin{bmatrix} 1/2, 1/2 \end{bmatrix}$.

[Turn Over]

 $1 \times 10 = 10$

471/Math.

(2)

- k) Define uniformly bounded sequence.
- 1) Give an example to establish if $f:[a, b] \to \mathbb{R}$ be Riemann integrable on [a, b] and f(x) > 0 for all $x \in [a, b]$, then $\frac{1}{f}$ may not be Riemann integrable on [a, b].
- m) Find the limit of the sequence of partial sums of the series $\sum_{n=1}^{\infty} (1-x)x^n$.
- n) Examine whether $\sum_{n=1}^{\infty} \cos nx$ is a Fourier series of some bounded integrable function over $[-\pi, \pi]$.
- o) State Parsevel's identity for a 2π periodic function f on $[-\pi, \pi]$.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Give an example of a trigonometric series which is everywhere convergent but not a Fourier series.
 - b) Let ϕ and ψ be two antiderivatives of a function f on [a, b]. Show that there exists $c \in \mathbb{R}$ such that $\phi = \psi + c$ on [a, b].

c) Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational } . \\ 1 & \text{if } x \text{ is irrational} \end{cases}$

Show that f has no antiderivative on [0, 1].

- d) Find the radius of convergence of the power series $x + \frac{2x^2}{1!} + \frac{9x^3}{2!} + \frac{64x^4}{3!} + \dots$
- e) Find the limit function of $\{f_n\}$ where $f_n(x) = \frac{x^n}{1+x^n}; x \in [0, 2]. \text{ Also state the reason whether the sequence of functions converges uniformly on } [0, 2].$
- f) Let {f_n} be a sequence of differentiable functions on [a, b] and {f_n} be uniformly convergent to f on [a, b]. If f differentiable on [a, b]? Justify.
- g) Show that the function $f(x) = \sum_{n=1}^{\infty} \frac{\cos(3^n x)}{2^n}$, $\forall x \in \mathbb{R}$ is continuous on \mathbb{R} .
- h) If $\sum_{n=1}^{\infty} a_n$ be a convergent series of real numbers then prove that the series

$$a_1 + \frac{a_2}{2^x} + \frac{a_3}{3^x} + \dots$$
 is uniformly convergent on $[0, \infty]$.

- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) If $\{f_n\}$ be a sequence of Riemann integrable functions on [a, b] such that $\{f_n\}$ converges uniformly to a function f on [a, b]. Then prove that f is Riemann integrable on [a, b] and the sequence $\left\{\int\limits_a^b f_n\right\}$ converges to $\int\limits_a^b f$.
 - b) A function f is defined on [0, 1] by f(0)=0, $f(x)=(-1)^{n+1}(n+1), \text{ for } \frac{1}{n+1} < x \le \frac{1}{n} \text{ (n=1, 2, 3, ...)}.$ Examine convergence of the integrals $\int_{0}^{1} |f(x)| dx.$
 - c) Let R(>0) be the radius of convergence of the power series $a_0 + a_1x + a_2x^2 + ...$. Prove that the radius of convergence of the power series $a_1 + 2a_1x + 3a_2x^2 + ... + (n+1)a_{n+1}x^n$ obtained by term-by term differentiation is also R.

4. Answer any **one** question:

- $10 \times 1 = 10$
- a) i) Prove that a bounded function f defined on [a,b] is Riemann integrable over [a,b] iff given $\varepsilon>0,\ \exists \delta>0$ such that $U(P,f)-L(P,f)<\varepsilon \ \text{for every partition}$ P of [a,b] satisfying $\|P\|<\delta$.
 - ii) Prove that,

$$\int_{0}^{1} \frac{x^{2} dx}{(1-x^{4})^{\frac{1}{2}}} \times \int_{0}^{1} \frac{dx}{(1+x^{4})^{\frac{1}{2}}} = \frac{\pi}{4\sqrt{2}}.$$

iii) Prove that the series

$$\sum_{n=1}^{\infty} \frac{x}{\left\{ (n-1)x+1 \right\} \left(nx+1 \right)}$$

is not uniformly convergent on [0, 1]. 4+4+2

b) i) If f(x) is the sum of the series $e^{-x} + 2e^{-2x} + 3e^{-3x} + ..., x > 0$, then show that f is continuous for all x > 0. Evaluate $\int_{-\infty}^{\log_3} f(x) dx$. ii) Evaluate $\lim_{x\to 0} \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ with justification.

6+4

- c) i) Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . For each $n \in \mathbb{N}$, let $f_n(x) = f\left(x + \frac{1}{n}\right), \ \forall x \in \mathbb{R}. \text{ Prove that}$ $\{f_n\}$ is uniformly convergent on \mathbb{R} .
 - ii) If $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos nx$ is the Fourier series of the $f(x) = \{\pi |x|\}^2$, $\forall x \in [-\pi, \pi]$, then prove that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{n^4}{90}.$ 4+6
