U.G. 6th Semester Examination - 2020 MATHEMATICS

Course Code: BMTMDSHT4

Course Title: Probability and Statistics

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Define sample space.
 - b) A die is thrown. Find the probability of getting 'multiple of three'.
 - c) What are the values of the random variable in case of tossing a coin?
 - d) Show that $Var(X) = E(X^2) \{E(X)\}^2$.
 - e) For Poisson distribution if its probability mass function is f_i , show that $\sum_i f_i = 1$.

- f) For continuous case, write down the marginal density functions of two variables for joint probability distribution of two variables.
- g) Define correlation coefficient of two random variables by specifying the terms.
- h) What is the relation between conditional mean and regression function?
- i) State Tchebycheff's Inequality.
- j) Write down the formula for two Beta coefficients.
- k) Give the names of types of population.
- 1) Write down the density function of χ^2 distribution mentioning the range of the variable.
- m) When an estimation is called biased? What is the measure of bias?
- n) Show that in estimating the mean of a normal population, sample mean is more efficient than sample median.
- o) Define critical region in connection with testing of hypothesis.

- 2. Answer any **five** questions:
 - a) If A and B are two independent events, then prove that \overline{A} and \overline{B} are also independent.
 - b) If $f(x) = kx^2 e^{-\frac{x}{2}}$, x > 0= 0, elsewhere

find the value of the constant k so that f(x) is a probability density function.

- c) Find the characteristic function of the Binomial distribution.
- d) Let the joint distribution of X and Y be given by the p.d.f.

$$f(x, y) = x + y$$
, if $0 < x < 1$, $0 < y < 1$
= 0, elsewhere

Find E(XY) and E(X+Y).

- e) A random variable X has probability density function $f(x)=12x^2(1-x)$, 0 < x < 1. Compute $P(|X-m| \ge 2\sigma)$.
- f) If m_r and α_r denote the r-th central moments of x and of the standardised variable $z=\frac{x-\overline{x}}{\sigma}$ respectively, where σ is the S.D. of x, then show that $\alpha_r=\frac{m_r}{\sigma^r}$.

g) Find the maximum likelihood estimate of the parameter λ of the distribution with p.d.f.

$$f(x) = \lambda \alpha x^{\alpha - 1} e^{-\lambda x^{\alpha}}, x > 0$$

using a sample size n, assuming that α is known.

- h) Write a short note on Interval Estimation.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - If X be a standard normal variate, find the probability density function of Y, where $Y = \frac{1}{2}X^{2}.$
 - b) The joint probability density function of the random variable x and y is

$$f(x, y) = k(1-x-y), x \ge 0, y \ge 0, x+y \le 1$$

= 0, elsewhere

where, k is a constant. Find

- i) the value of k
- ii) the marginal probability density functions
- iii) the mean value of y when $x = \frac{1}{2}$.

 $2 \times 5 = 10$

Ten individuals are chosen at random from a c) normal population with mean m and standard deviation σ and their heights in inches are found to be

63, 66, 63, 67, 68, 69, 70, 71, 72 and 71.

Find 95% confidence interval for the parameter m. Given P(t > 2.262) = 0.025 for 9 degrees of freedom.

- Answer any **one** question: $10 \times 1 = 10$
 - a) i) If the joint distribution of X and Y is the general bivariate normal distribution and

$$U = \frac{X - m_{x}}{\sigma_{x}}, V = \frac{1}{\sqrt{1 - \rho^{2}}} \left\{ \frac{Y - m_{y}}{\sigma_{y}} - \rho \frac{X - m_{x}}{\sigma_{x}} \right\}$$

then prove that U and V are independent standard normal variates. 5

- Given $\Sigma x = 56$, $\Sigma y = 40$, $\Sigma x^2 = 524$, ii) $\Sigma y^2 = 256$, $\Sigma xy = 364$, n=8. Find the equations of the regression lines of x on y and of y on x. 5
- Find the moment generating function of b) i) the normal distribution. Hence obtain 5 mean.

Find out the skewness and kurtosis of the ii) series by the method of moments:

Measurement:	0-10	10-20	20-30	30-40
Frequency:	1	3	4	2

5

- If X and Y be correlated and U and V be c) defined by $U = X \cos \alpha + Y \sin \alpha$, $V = Y \cos \alpha - X \sin \alpha$, then prove that U and V will be uncorrelated if $\tan 2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma^2 - \sigma^2}$. 5
 - If $X_1, X_2, ..., X_n$ be a random sample from a normal (μ, σ^2) distribution, then show that $\frac{(n-1)S^2}{\sigma^2}$ is a χ^2 distribution with (n-1) degrees of freedom where S^2 is the sample variance. 5