U.G. 1st Semester Examination - 2021 MATHEMATICS

Course Code: BMTMCCHT101

Course Title: Calculus & Analytical Geometry (2D)

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

1. Answer any **ten** questions from the following:

$$1 \times 10 = 10$$

- a) If $f(x) = \cos nx$, then write down the value of $f^{(n)}\left(\frac{\pi}{2}\right).$
- b) What is the value of the integral

$$\int_{-2021}^{2021} \sin^{2021} x \cos^{2021} x \, dx ?$$

c) Write down the angle between the pair of straight lines given by $x^2 + 2xy \sec \theta + y^2 = 0$.

- d) What is the degree of the honogeneous function $f(x,y) = \frac{x^{\frac{2}{3}} + y^{\frac{2}{3}} + x^{\frac{1}{3}}y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}}$?
- e) What is the necessary and sufficient conditions for $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ to represent a pair of straight lines?
- f) Transform the equation $(x^2 + y^2)^2 = a^2(x^2 y^2)$ to polar form.
- g) Obtain the value of $\int_{0}^{\frac{\pi}{2}} \sin^{10} x \, dx$.
- h) What are the vertical asymptotes of the curve $x^2y^2 = x^2 + y^2$?
- i) What is the condition that the straight line lx + my + n = 0 may be a tangent to the parabola $y^2 = 4ax$?
- j) Evaluate $\lim_{x\to 0} \frac{x^{2022}}{e^x}$.
- k) If $x = r\cos\theta$ and $y = r\sin\theta$, find $\frac{\partial \theta}{\partial x}$.

1) If
$$x = a(\cos \theta + \theta \sin \theta)$$
, $y = a(\sin \theta - \theta \cos \theta)$,
then find $\frac{d^2y}{dx^2}$.

- m) Find the value of c, for which the equation $x^2 + y^2 + 2x + 4y + c = 0$ represents a pair of straight lines.
- n) Determine the nature of the conic $r(4-5\cos\theta)=1$.
- o) Find the differential of arc length for the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

2. Answer any **five** questions: $2 \times 5 = 10$

- a) If u = x, v = x+y and w = x+y+z, show that $\frac{\partial (x,y,z)}{\partial (u,v,w)} = 1.$
- b) If $u = \sqrt{xy} f\left(\frac{y}{x}\right)$, show that $xu_x + yu_y = u$.
- c) Find the pedal equation of the curve $2r = 1 + \cos \theta$.
- d) If $xy = x^n \log x$, show that $xy_n = (n-1)!$.

- Determine the points of inflexion of the curve $y = \sin x$.
- Show that the sum of the intercepts of any tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$, is a constant.
- g) Show that the curve $y^3 + 3ax^2 + x^3 = 0$ is everywhere concave to the x-axis.
- h) Find the equation of the tangents to the circle $x^2 + y^2 + 8x + 10y 4 = 0$ which are parallel to the straight line x + 2y + 3 = 0.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) Show that the volume of revolution generated by the region enclosed by $y = \sqrt{x}$ and the lines y = 1, x = 4 about x-axis is $\frac{9\pi}{2}$.
 - b) Reduce the equation $3(x^2 + y^2) + 2xy = 4\sqrt{2}(x+y)$ to its canonical form and determine the nature of the conic. Find also the eccentricity of the conic and the equations of the axes.
 - c) Chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ touch the circle $x^2 + y^2 = d^2$. Find the locus of their poles.

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) If f be a homogeneous function of x, y, z of degree n and f = f(u, v, w) also where, $u = f_x$, $v = f_y$ and $w = f_z$ are differential, show that

$$uf_{u} + vf_{v} + wf_{w} = \frac{n}{n-1}f.$$

- ii) If $f(x) = e^{-x}D^{n}(e^{x}x^{n})$, where $D = \frac{d}{dx}$, then show that x f''(x) + (x+1)f'(x) - nf(x) = 0.
- b) i) If $I_n = \int (\sin x + \cos x)^n dx$, then show that $n I_n = 2(n-1)I_{n-2} (\sin x + \cos x)^{n-2}.$
 - ii) If f is a function of x, y and $x = r\cos\alpha \theta\sin\alpha , \quad y = r\sin\alpha \theta\cos\alpha$ then show that $f_{xx} + f_{yy} = f_{rr} + f_{\theta\theta}$ and $f_{rr}f_{\theta\theta} f_{r\theta}^2 = f_{xx}f_{yy} f_{xy}^2. \qquad 2+3$
- c) i) If the normal to the rectangular

hyperbola
$$xy = c^2$$
 at $\left(ct_1, \frac{c}{t_1}\right)$ meets the curve at $\left(ct_2, \frac{c}{t_2}\right)$, then show that $t_1^3t_2 = -1$.

ii) If one of the straight line of $ax^2 + 2hxy + by^2 = 0$ coincides with one of the straight line of $a'x^2 + 2h'xy + b'y^2 = 0$ and the remaining two straight lines are at right angle, then

show that
$$h\left(\frac{1}{b} - \frac{1}{a}\right) = h'\left(\frac{1}{b'} - \frac{1}{a'}\right)$$
.

6+4